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Abstract

We argue that many problems in robotics arise from the difficulty of integrating multiple knowledge representation and
inference techniques. We describe an architecture that integrates disparate reasoning, planning, sensation and mobility algorithms
by composing them from strategies for managing mental simulations. Since simulations are conducted by modules that include
high-level knowledge representation and inference techniques in addition to algorithms for sensation and reactive mobility,
cognition, perception and action are continually integrated. An implemented robot using this framework in object-tacking and
human–robot interaction tasks demonstrates that knowledge representation and inference techniques enable more complex and
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1. Introduction

We propose that many problems in design
intelligent autonomous robots arise from the difficu
of combining knowledge representation and infere
techniques into one robot that can construct
maintain rich, coherent and dynamic models of
environment. These include the problems involve
data fusion, symbol grounding and flexibly combin
reasoning, planning, perception and action.
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The data fusion problem involves integrating infor-
mation from multiple sensors into a coherent model
of the environment. For example, when sensor A in a
robot detects an object and sensor B in the same robot
detects an object, the robot must determine whether the
two sensors are detecting the same or different objects.
Since each class of sensor information has its own best
representation, sensor fusion is in part a problem of
combining multiple representation schemes. Since the
decision about whether information from two sensors
is about the same object can depend on world knowl-
edge (e.g., that objects of a particular category are too
slow to have moved from sensor A’s range to sensor B’s
range in so short time) that is often best represented us-
ing artificial intelligence reasoning techniques, robust
sensor fusion also requires the integration of sensor in-
formation with traditional AI representations.

Some researchers (e.g.[1]) have argued that sym-
bols manipulated by traditional artificial intelligence
algorithms cannot have any relation to objects, events
and relations in the environment that are perceived
through sensors yielding data in very different repre-
sentations. This “symbol grounding” problem is fun-
damentally a problem of integrating different sorts of
(“perceptual” and “symbolic”) representations.

A third problem in robotics stems from the need to
use multiple knowledge representation techniques to
model the world. It is well known that different aspects
of the world are best represented using different
knowledge representation techniques. Since different
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have the virtue of always taking the most relevant ac-
tion given the current information. A major problem
with these approaches is that so much of what deter-
mines the correct action for a robot to take involves
the environment in past or future, occluded, spatially
distant and/or hypothetical situations that cannot be
immediately sensed. For example, the future conse-
quences of an action (i.e., the future state of the hy-
pothetical world in which that action is taken) help to
determine whether a robot should take that action. For
tasks or environments with all but the most minimal
complexity, one cannot anticipate all possible classes
of sensor readings and precompile an appropriate re-
action for each situation. Thus, representation-free ap-
proaches are severely limited by the complexity of the
environments they can deal with and the tasks they can
achieve.

Since so many problems in robotics involve the
integration of multiple representation and inference
techniques, we have developed a robotic architecture
that supports the combination of these techniques. The
architecture, which we call Polybot, is based on the
Polyscheme cognitive architecture[6] for solving inte-
gration problems in artificial intelligence and cognitive
science generally. Polyscheme differs from traditional
cognitive architectures based on one or a few data
structures by enabling inference based on multiple
data structures. Polyscheme differs from the many
multi-agent system architectures that encapsulate spe-
cialized algorithms in modules by enabling every step
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epresentations often require or are associated wit
erent inference algorithms (e.g., rule matchers ope
n rules, junction tree algorithms operate on Ba
etworks) robots must integrate multiple reason
nd planning algorithms with each other. This i
ifficult problem in robotics and artificial intelligen
enerally since AI algorithms can have such diffe
ata and control structures. It is not at all clear,
xample, how to tightly integrate a STRIPS[2] planner
ith a localization algorithm based on POMDPs[3].
Behavior-based and reactive (e.g.[4,5]) robotics re

earchers have reacted to this difficulty by dispen
ith algorithms that are based on constructing and
ipulating internal representations that are not clo
in time and space) tied to what is being immedia
ensed. Since there is no “old” information and
obot never needs to pause to perform computa
n internal representations, these systems appe
f every algorithm to be executed using multiple r
esentations and be potentially assisted by every
lgorithm.

The next two sections explain how Polyb
omposes reasoning and planning techniques
ognitive science and artificial intelligence resea
y sequences of mental simulations. Since Polybo
bles these sequences of simulations to be interle
nd since a particular simulation can be part of
xecution of more than one algorithm, multiple r
oning and planning algorithms are easily integra
ince each simulation is conducted using multiple

esentations, spanning the continuum from low-l
erception and mobility techniques to higher-le
nowledge representation schemes, reasoning
lanning in Polybot are continuously integrated w
erception, action and multiple knowledge represe

ion schemes. The final section gives a brief overvie
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the initial results we have achieved with this approach
in object tracking and human–robot interaction tasks.

2. An architecture for integrating multiple
representation and inference techniques
through the control of mental simulations

Polyscheme is motivated by the view that the diffi-
culty of achieving the benefits of both high-level rea-
soning and planning and behavior-based and reactive
systems is a problem of combining different representa-
tion and inference techniques into one system. In using
Polyscheme to design Polybot, we aimed to create an
architecture that could engage in reasoning and plan-
ning that is at every step responsive and adaptive to in-
formation from (potentially noisy) sensors and changes
in the world.

Polyscheme’s fundamental approach to this prob-
lem is to implement and execute reasoning and plan-
ning algorithms using mental simulations that are
based on perceptual and reactive representations as
well as traditional artificial intelligence representa-
tions. Polyscheme takes “reactive” components that
typically choose their actions only with reference to the
currently sensed state of the world, and allows them to
“react to” represented or simulated states of the world.
Using strategies for choosing which simulations to run
(i.e., what time, place or hypothetical world to simu-
late), Polyscheme implements high-level AI algorithms
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executed by specialists. The rest of the Polyscheme
architecture is aimed at coordinating and sharing in-
formation among specialists.

2.2. Specialists communicate using a
representation-neutral language based on a
common ontology

Specialists must share information in order to per-
form their functions. For example, a mobility specialist
will need information from a perception specialist in
order to avoid obstacles. In order for specialists to be
able to communicate such information, all Polyscheme
specialists use the same common language to commu-
nicate information. Because the language is only used
for communication and not computation, we focused
on a simple, though expressive, propositional language.
Specialists in Polyscheme must be able to translate be-
tween their internal data structures to this propositional
language. In order for these specialists to communi-
cate, the language must adhere to a standard known
to all specialists. For example, an object recognition
specialist indicates that a cone is at locationp at time,
now, with the propositionsLocation(o,p,now) ,
xOf(p,3.4,now) ,yOf(p,4.2,now) , andCat-
egory(o,Cone,now) . If other specialists are to use
this information (e.g., a mobility specialist that knows
to avoid cones), then they must share predicates such
asLocation , xOf , yOf andCategory and under-
stand the units of distance and time used in their ar-
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y executing mental simulations. Because simulat
re composed in part of reactive and perceptual
omponents, reasoning is constantly and thorou
ntegrated with perception and action. We now desc
ow these ideas are realized in Polybot.

.1. Polyscheme encapsulates mobility and
erception techniques in specialists

Polyscheme encapsulates the functionality of ro
erception and mobility techniques in modules ca
pecialists. Because our experience has shown
ultiple techniques for mobility and perception
seful, specialists may use any algorithm or data s

ure to implement their functionality. For examp
olybot includes a specialist that identifies the lo

ion and category of objects using color segmenta
7]. All the inferences and actions in Polyscheme
uments. Specialists are not committed to using t
nits and these predicates in their own internal com

ations or even using representations based on p
ates on objects. They must simply be able totranslate
etween this representation and their owninternalrep-
esentation. By separating the representation use
ommunication from the representation used for in
nce, we achieve the benefits of a common onto
ithout the rigidity often associated with such kno
dge representation schemes.

.3. Specialists implement a common set of
unctions used to share information

Specialists each implement a common set of f
ions that Polyscheme uses to coordinate informa
ow and behavior. By standardizing this set of fu
ions and by using the common propositional langu
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described in the last section, specialists do not need to
take into account the implementation details of other
specialists and Polyscheme can be extended with new
specialists more easily. These functions are as follows:

ReportOpinion(prop,otherSpecialist,
tv) . A specialist learns thatotherSpecialist
believes that the proposition,prop , has truth value
tv .

StanceOn(prop) . Returns the truth value the
specialist believesprop . These truth values are an-
notated with the degree of confidence the specialist has
in that theprop being true or false.

RequestedFoci( ) . Returns a set of proposi-
tions that the specialist would like to focus on. These
include, but are not limited to, propositions that the
specialists wants to assert as being true or false and
subgoals (i.e. propositions whose truth values would
help the specialist take a more accurate stance on an-
other proposition).

Groundings(prop) . Returns a set of closed
propositions that ground the open (i.e., its arguments
have open variables) proposition,prop .

2.4. Specialists must alert the system to changes in
their beliefs

Because robotic sensors are noisy and because they
generally yield incomplete information about the envi-
ronment (because of limited sensor ranges and occlud-
ers), Polyscheme’s specialists will at least occasionally
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sensed (because it is distant, occluded, hypothetical at
another time and/or at another place)non-immediate.
To represent non-immediate situations, Polyscheme’s
ontology includes temporal intervals and hypothetical
worlds. The last two arguments of every proposition
input to and output from specialists are, respec-
tively, a time and world argument. For example, the
proposition that object,o, is located at pointp, in
hypothetical world,w, at timet is indicated:Loca-
tion(o,p,t,w) . In the next section we discuss
how Polyscheme represents non-immediate states.

2.6. Specialists simulate non-immediate states
using multiple representations

If specialists must react to non-immediate states
of the world, then there must be some representation
of those states that is different from the current state
of the robot’s sensors. There must be a memory for
past events, properties of objects and relations between
them; there must be a way to represent future and hypo-
thetical states so their desirability can be evaluated and
it must be possible to represent distant or occluded parts
of the environment. Because different representational
techniques are most appropriate for different aspects of
the world (for example, temporal constraint graphs for
temporal intervals, spatial maps for object locations)
Polybot includes multiple specialists that encapsulate
representations for different aspects of the world. Rep-
resentations that have already been implemented in-
c ripts
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hange their stance on a proposition. When this oc
t is important that other specialists are notified of
o that they do not continue to make inferences
ake actions based on bad information. A specia
equestedFoci( ) function must therefore includ
mong its assertions stances on propositions on w

t has revised its beliefs.

.5. Specialists must be able simulate
on-immediate states

Since robots’ actions and inferences often dep
n past, future, distant and/or hypothetical situati
pecialists in Polyscheme must be able to react no
o the immediately sensed state of the world, but s
epresentation (described in the next section) of
uture, distant, invisible or hypothetical states. We
ny state, event, region, or situation that is not curre
lude spatial maps, temporal constraint graphs, sc
nd directed graphs.

Given that robots must represent non-immed
tates, how do they decide what the truth is about t
tates? There are several mechanisms for accom
ng this. Memory is a mechanism for deciding w
as true in the past. Causal rules, constraint sati

ion algorithms, and dynamic simulation can pre
hat is true in future and/or hypothetical states. T
an also decide what is happening in occluded reg
f the environment, for example, when the causal
pecialist predicts that in the absence of an obstac
xternal force, a ball rolling behind an occluding ob
ill continue to exist and roll behind the occluder e

hough the ball and its motion are not detected at
oment by the robot’s sensors. We use Minsky’s[8]

ermsimulusto refer to the input to specialists from
imulated world.
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Although inferential specialists use high-level AI
algorithms, the way they interface with the rest of the
system has a reactive character because they implement
the same specialist functions as reactive specialists. For
example, Polyscheme’s category hierarchy specialist
learns new information about an object through itsRe-
portOpinions( ) function, “reacts” to it by using
its own internal data structures and algorithms to make
inferences about the category membership of the ob-
ject, and uses theRequestedFoci( ) function in-
form other specialists of these.

Table 1illustrates how several “high-level” artifi-
cial intelligence algorithms take on a reactive character
when encapsulated in specialists.

2.7. Specialists must focus their attention

All specialists in Polyscheme react to the same
proposition at the same time. There are two reasons for
this. First, a surprisingly large number of specialists
are relevant to any particular proposition. For example,
when inferring whether a falling object will continue to
fall, a causal specialist will predict that it will do so if
the region underneath the object is empty, the percep-
tual specialist might be able to see whether there is a
supporting object, the object location specialist might
be able to remember if there was a support, etc. Second,
if a specialist acts on an inferred or perceived propo-
sition before checking other specialists’ stances on it,
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The chief form of communication among special-
ists in Polyscheme is through the focus of attention.
Through functions such asStanceOn( ) , Repor-
tOpinions( ) , Groundings( ) andRequest-
edFoci( ) , specialists communicate information to
and request information from each other. When a
proposition becomes the focus of attention, each spe-
cialist learns the other specialists’ opinions of its truth
and has an opportunity to ask questions that flow from
or assert propositions that follow from the focal propo-
sition.

2.8. Specialists must quickly react to the focus

Because the environment can change quickly or
because new sensor information may become avail-
able at any moment, specialists must quickly execute
functions such asStanceOn( ) andReportOpin-
ion( ) so that the specialist can constantly focus
on and make inferences with the newest information.
This is an important component of Polyscheme’s
solution to the problem of inferences and plans that
are invalidated before they are completed or executed.

2.9. Simulations result from the focused attention
of specialists

One result of the architectural principles discussed
in this section is that Polyscheme’s specialists collec-
tively perform a kind of simulation. When Polyscheme
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he specialist might be acting on incorrect informa
hat can lead to harmful mistakes or at best requ
ime-consuming retraction of incorrect actions and
erences.

For these reasons, at every time step in Polysch
pecialists focus on the same proposition. Onc
roposition,P, is chosen (as described in the next s

ion), the following sequence occurs:

Polyscheme callsStanceOn(P) for each specia
ist to determine the consensus truth value of al
specialists onP.
For each specialist, Polyscheme calls the func
ReportOpinion(P,specialist,tv) to re-
port specialists’ truth values forP to each other.
Polyscheme callsRequestedFoci( ) to get
propositions the specialists would like to focus
soon.
ocuses on a particular time and world, the architec
orces all specialists to focus on that time and wo
he sum effect of this attention will be that spec

sts will make inferences about that world and th
ore elaborate Polyscheme’s representation of it. S
ome of these inferences will involve the conseque
f states and events in this world, Polyscheme wil
us on subsequent times in the same world. The r
s that specialists will perform a dynamic simulation
hat world.

.10. Focus schemes guide simulation

Nonrepresentational robotic systems must
tantly (implicitly or explicitly) make a choice, “Whe
o I look now?”, because sensors are inherently
ected towards a local region of space. Even sen
hich uniformly monitor the region surrounding
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Table 1
Reactions to simuli in multiple representations

Simulus Representation/algorithm Action

Sensors None for reactive systems Action
Cause Causal rules/rule matching Assert effect
Input layers Neural networks/network propagation Output layer
Object category information Category hierarchies/graph walking Assert other categories the object belongs to
Two temporal intervals Temporal intervals/constraint propagation Assert the possible constraints between the two intervals

robot can be directed to another region by the robot’s
motion. For Polybot, the number of choices is even
greater because specialists can focus on many possible
simulated worlds in addition to the immediate world
itself.

As indicated in the previous section, when
Polyscheme specialists focus on a proposition, they
ask for a set of propositions to focus on through their
RequestedFoci( ) function. Polyscheme’sfocus
managerchooses from these requests (based on their
level of urgency (as indicated by the specialist) and
several other factors). If the proposition is open or
“ungrounded”, i.e., if it contains an open variable,
the focus manager chooses a proposition that grounds
the proposition. Once the focal proposition is chosen,
Polyscheme calls the various specialist functions as in-
dicated in the last section.

Polyscheme thus continuously chooses a proposi-
tion to focus on, allows specialists to communicate
about and make inferences about this proposition and
then chooses the next proposition to focus on based on
specialists’ requests. Through their ability to request
Polybot to focus on a proposition, specialists can in-
fluence the flow of attention and hence computation.
We call different strategies for guiding attentionfo-
cus schemes. We have already encountered one focus
scheme implemented by all specialists:

Resimulation focus scheme. When a specialist in-
fers that a propositionP has a truth value that is the
opposite of the truth value it returned during the last
c t
o n
i s its
s n
a

e. It
t fore
e

Prediction focus scheme. When the motor spe-
cialist is about to take an action,A, simulateOc-
curs(A,t,w) wheret is the next time step andw is
the hypothetical world in whichA is taken at timet .

When the system focuses onOccurs(A,t,w) , all
of the specialists in the system will infer what else is
true in that world, i.e., what the consequences are of
the actionA, and request that these consequences be
focused on through theirRequestedFoci( ) func-
tion. If w is a world that contains damage or harm, the
motion specialist will not executeA.

3. Algorithms are implemented by strategies
for choosing simulations

The most fundamental point of this paper is that
many “high-level” artificial intelligence algorithms
can be implemented by focus schemes for choosing
simulations that Polyscheme’s specialists execute. We
illustrate this by showing how to implement back-
tracking search with the counterfactual simulation
focus scheme.

Counterfactual simulation. When uncertain about
A’s truth value (because of a lack of information or
because of conflicting information), simulate the world
in whichA is true and the world in whichA is false.

If when simulating one of these worlds, say whereA
is true, one of the specialists infers a fact that contradicts
what is already known for certain, then the world where
A d
t

two
p h
A
c lies
a d
t of
all of StanceOn(P) , includeP in the return se
f RequestedFoci( ) the next time that functio

s called. Less formally, when a specialist change
tance onP, it should request thatP be focused o
gain.

Another example is the prediction focus schem
ells Polybot to simulate the results of an action be
xecuting it:
is true is contradictory and henceA can be inferre
o be false in the real world.

Consider the case where Polybot is uncertain of
ropositions,AandB. In the simulated world in whic
is true, there is still uncertainty aboutB. Thus the

ounterfactual simulation focus scheme still app
nd imagines the world in whichA andB are true an

he world in whichA and not-B are true. When one
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Table 2
Inference algorithms and the focus schemes simulations that imple-
ment them

Algorithm Focus scheme that
implements it

Case-based reasoning Memory-based simulations
Prediction Forward simulation
Counterfactual reasoning Counterfactual simulation
Backtracking search (nested) Counterfactual

simulation
Backward chaining/

theorem proving
Antecedent simulation

Truth maintenance Resimulation
Bayesian inference Stochastic simulation

these leads to a contradiction, that world is not simu-
lated any longer. Thus, the counterfactual simulating
focus scheme can lead to nested simulations which ef-
fectively implement backtracking search.

Table 2lists several focus schemes that implement
important artificial intelligence algorithms. The resim-
ulation focus scheme of the last section implements a
form of truth maintenance since the result of focusing
on a proposition whose truth value has changed will
be to resimulate events and states the proposition re-
lates to and hence change incorrect inferences based
on the initial false belief. Cassimatis[9] has shown
that theantecedent simulation(roughly, “when P im-
plies Q and you want to know Q, simulate the world
where P is true”) implements a form of resolution the-
orem proving. Thestochastic simulationfocus scheme
(“when P has probabilitym/(m+ n), simulate the world
where P is truem times and the world where P is false
n times) implements an approximate form of Bayesian
inference that has been used widely by the uncertain
reasoning community. Finally,memory-based simula-
tion (“when G is a goal, simulate in the current situation
actions you have previously taken that have achieved
goals similar to G”) implements a form of case-based
reasoning.

4. Combining mental simulations resolves
many integration issues in robotics

oach
t nce
s any
p am-

ple, illustrated inFig. 1, which will illustrate several of
this paper’s themes.

4.1. An extended example

In 1a, Polybot starts by observing an orange robot.
Its task is to track that robot. In 1b, Polybot sees that
robot move behind a screen and loses visual contact
with it. In 1c, Polybot sees an orange robot move out
from the screen and infers that it is the robot it is track-
ing. As it moves towards that robot, it sees a barrier
behind the screen (1D) that the robot could not have
rolled through and infers that the orange robot it sees
now is different from the robot it is tracking and goes to
the other side of the obstacles to find that robot.Table 3
traces Polybot’s focus during this scenario.

The following sections use this example to illustrate
how using Polyscheme to combine multiple represen-
tation and inference techniques helps to resolve many
of the problems surrounding building flexible robots
that can engage in high-level reasoning.

4.2. Simulations are a medium for integrating
multiple representations

The example shows that sharing information be-
tween different representations is fairly straightforward
in Polyscheme. Each specialist has its own representa-
tion and can translate back and forth between it and
the representation-neutral language used to encode the
f spe-
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i
s ugh
t e
s that
p ugh
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l .

ng.
T rep-
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Now that we have described Polyscheme’s appr
o supporting multiple representation and infere
chemes, we discuss how this helps to resolve m
roblems in robotics. We do so by presenting an ex
ocus. For example, during step 9, the perception
ialist perceives thatp2 is empty and encodes that

ts own perceptual representation, returnstrue as a
tance and the other specialists learn of this thro
heir ReportOpinion( ) function. One of thes
pecialists is the causal specialist which encodes
2 is empty in its causal rule language. Thus, thro

he focus of attention and the representation-ne
anguage, specialists can share information easily

In this context, symbol grounding is less puzzli
he causal rule specialist can manipulate symbols
esenting emptiness without fear of losing touch w
physical reality” because each simulation it perfo
ombines (through the focus of attention) informa
rom sensors and information from the rule specia
his is made possible because of the representa
eutral language the specialists share. Thus, our

ion to the symbol grounding problem is to integr
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Fig. 1. Polybot tracks another robot as it moves behind an obstacle. The tracked robot moves from the right of the obstacle (a), behind the screen
(b) and a robot that appears to be the tracked robot moves out from the left of the obstacle (c). Moving towards this robot (d), Polybot receives
new sensor information which triggers a combination of belief revision and physical reasoning to conclude that this is not the originally tracked
object.

perceptual specialists into the focus of attention so that
each simulation and hence each step of every infer-
ence algorithm is constantly integrated and synchro-
nized with perception.

4.3. Combining simulations combines algorithms

In this example, Polybot executes three different al-
gorithms: prediction, backtracking (path) search and
truth maintenance. Each is composed of several foci.
Prediction is composed of foci 4–7 and 11–13, back
tracking search is composed of 6, 9 and 10 and truth
maintenance is composed of 9–13. Note that each al-
gorithm’s foci overlap with the others. This overlap or
sharing of foci is a key to combination of algorithms in

Polyscheme. When, for example, Polybot focuses on
Empty(p2,E,R) in step 9, the specialists’ inferences
about whether that proposition is true are shared by both
the search- and truth-maintenance algorithms. In gen-
eral, since algorithms implemented by focus schemes
are merely composed of foci, the data they operate on
resides in the specialists which make inferences on the
foci. Since foci can be shared by any algorithm, sharing
information between these algorithms is simple.

4.4. Simulations integrate reasoning, planning,
perception and action

Inference algorithms are composed of sequences of
simulations executed by specialists. Since these spe-
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Table 3
A trace of Polybot’s focus

Focus Simulation Algorithm Explanation

1 – Immediate Perception specialist observes the cart move from be-
hind the boxes(Location(robot1,p1,t1,R)
and Category(robot1,Cart,t1,R)) and
then observes a cart come out from behind the
boxes (Location(robot2,p3,t3,R) and
Category(robot2,Robot,t3,R))

2 Category(robot2,Robot,T1,R) Immediate Identity hypothesis specialist’s neural network infers
thatSame(robot1,robot2,E,R) and requests
focus for that proposition

3 Same(robot1,robot2,E,R) Immediate The difference specialist detects a difference in the
location of tracked cart, infers an change event and
requests for a focus onExists(d,E,R) , Cate-
gory(d,ChangeEvent,E,R) , etc.

4 Category(d,Change,E,R) Recent Prediction The causal rule specialist infers that sincep1 andp3
are not adjacent points, there must be an intermediate
point,P, that robot1 visited and thatPmust be empty

5 Occupant(P,nothing,t2,R) Recent Prediction The space specialist infers that thereP might be
the intermediate point and requests for a focus on
Same(p2,P,w) , wherew is the world wherep2
andP are the same

6 Same(p2,P,E,R) Immediate
hypothetical

Prediction,
Search

The tracking specialist infers that since the location
robot1 is now atP that the system should move
there

7 – Future
hypothetical

Prediction The prediction focus scheme simulates that motion
and finds no problems. (This takes several steps.)

8 – Immediate While moving towards that location, the perception
specialist seesp2 for the first time and sees that P is
not empty, but Occupant by a wall

9 Occupant(P,wall,t2,R) Current
hypothetical

Search, Truth
maintenance

The difference specialist notices the difference be-
tweenOccupant(P,wall,t2,R) and notOc-
cupant(P,nothing,t2,R) . Since p2 is cer-
tainly empty, andP is certainly not empty, then
the difference specialist assumes that in fact
Same(p,p2,E,R) is false and requests focus for
that proposition because of the resimulation focus
scheme

10 Same(p2,P,E,w) Hypothetical Truth
maintenance,
Search

The space specialist cannot find any other places that
Pmight be equal to and thus assumes it does not exist
and request focus forExist(P,E,R)

11 Exists(P,E,R) Immediate Truth
maintenance,
Prediction

Since no intermediate point exists, the causal rules
specialist retracts the existence of the event that im-
plies it and request focus on it because of resimulation

12 Exists(d,E,R) Past Truth
maintenance,
Prediction

Since delta is retracted, the identity of
Same(robot1,robot2,t2,E,w) is retracted

13 Same(robot1,robot2,E,R) Immediate Truth
maintenance,
Prediction

Thus,robot1 androbot2 are different and robot1
is still behind the box on the left

14 – Immediate Motion specialist initiates movement in that direction
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cialists include specialists for perception and mobility,
the combination of high- and low-level computational
techniques is constant in Polybot. For instance, the fo-
cus in step 9 of the example is part of a path search.
The focus,Empty(p2,E,R) , is perceived to be false
and modifies the course of the path search. This is a
simple example of a system’s sensors being able to in-
fluence the course of a high-level artificial intelligence
algorithm as it is being executed.

4.5. Reasoning and planning with information
from noisy sensors in a dynamic world

Three features of this approach greatly reduce the
tension between the flexibility of representation-free,
reactive systems and the power of high-level artifi-
cial intelligence algorithms. First, since algorithms are
composed by simulations executed by specialists and
because these specialists include perceptual special-
ists, every step of inference is always being checked
against new sensor information. Thus, revisions in sen-
sor readings or changes in the world will be detected
immediately. Second, because each specialist is obli-
gated to immediately broadcast these changes to the
rest of the specialists as soon as they occur, inference
can be adjusted immediately. Finally, because algo-
rithms are composed of reactions that are required to
follow quickly from simuli, there is no long lag between
the formulation and execution of a plan during which
the plan can become invalidated by changes in the
w
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ogy (category lattice), uncertainty, perspective and ob-
ject identity (neural networks).

Many tasks require robots to keep track of the
identity and location of at least some objects in
their environment. In general, the sensors of a robot
tracking an object detect multiple objects each instant.
The robot must decide which of these sensor readings
belong to the object it is tracking. When the distance
in time and space from one object sighting to the next
is brief, this problem is often relatively easy and there
are many algorithms for solving it. However, when
objects are occluded from the robot for long periods of
time, the problem is much more difficult because of the
potentially large number of interactions the occluded
object could have participated in. For example, the last
section described an object tracking scenario where
Polybot was able to rule out a match between two robot
sightings by searching for a continuous path between
the two sightings and reasoning about the physical
interactions those involved. Thus far, this had been
difficult for many object tracking systems because they
had only been based on algorithms not well-suited for
physical reasoning and path search whereas Polybot
can use Polyscheme to combine physical reasoning
and path search with the short-distance object-tracking
algorithms in its vision specialist. By combing both
classes of techniques, Polybot’s object tracking has
been greatly improved. Polybot’s visual system itself
could only track an object when it is occluded for less
than a meter and less than a second. Using Polyscheme
t g,
P they
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In the example above, as soon as Polybot’s in

ssumption thatP is empty is seen to be false in s
, that change is broadcast to the rest of the sy
nd search is immediately altered. The revision d
ot need to wait until the end of prediction and tr
aintenance in step 13 for it to influence inference

.6. Results and conclusion

We have developed this framework and dem
trated its benefits primarily in object tracking a
uman–robot interaction domains. This work has b
ased on several specialists we implemented, inclu

hose for perception (which uses CMVison), movem
a reactive planner), temporal constraints ([10], tempo-
al intervals), spatial location (cognitive maps), s
hange detection, causation (production rules), o
o combine this ability with physical reasonin
olybot can now often track objects even when
re occluded for several meters and for longer
min.
In our human–robot interaction work, Polybot h

een able to improve upon previous work on an ob
eference tasks by using its ability to simulate the w
rom a person’s perspective in order to more accura
nderstand and predict his actions. We created a

n which a human would use language to refer to
bject and it was the robot’s task to go to that obj
ince there were many instances of the same obje

he room and since humans could see objects tha
obots could not, and vice versa, many of the hum
tterances were ambiguous when taken literally. By

ng Polybot’s simulation abilities, robots were able
ake the perspective of the human in the task and
ificantly improve the accuracy of their understand
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One limitation of our approach so far has been the
difficulty of formally characterizing the conditions un-
der which a robot designed using this approach is
correct or optimal. This characterization is difficult
to achieve because Polyscheme combines techniques
based on different formal frameworks, which do not
as of yet have a single framework that subsumes them,
and can include techniques for which there is no formal
framework. In return for this sacrifice, Polyscheme en-
ables systems that include functionality not available
from any particular computational technique and en-
ables these techniques to be flexibly combined with
perception and action.

We believe that these results are a first step towards
demonstrating that this approach towards integrating
kind of knowledge representations and inference algo-
rithms reduces the tension between achieving complex
reasoning and planning using high-order knowledge
representation and inference techniques and maintain-
ing the flexibility of reactive architectures.
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